Recombinant human C1 esterase inhibitor (Conestat alfa) in the prevention of contrast-induced nephropathy in high-risk subjects (PROTECT): a randomized, placebo-controlled, double-blind single-center trial

Michael Osthoff, M.D.
Division of Internal Medicine, Department of Infectious Diseases, Department of Clinical Research and Biomedicine, University Hospital Basel, University Basel, Basel, Switzerland

26th October 2019
Disclosures

- **Research grants**: Pharming Biotechnologies B.V., Fondation Machaon, University Basel
- **Travel grants**: MSD, Gilead, Pfizer, Pharming Biotechnologies B.V.
- **Lecture fee**: MSD, Mundipharma
- **Consultation fee**: Pharming Biotechnologies B.V.
Radiographic contrast media (CM)

- Essential tool in modern radiology and medicine
 - Diagnostic

- Therapeutic
Radiographic contrast media (CM)

- CM makes fluid visible by increasing absorbance (>10% compared to blood)
History

- **1910**: Barium sulphate for gastrointestinal contrast study

- **1920’s**: sodium iodide used to treat syphilis. Was found to be radio opaque on x-rays

- **Iodinated CM most commonly used today for**
 - CT scans
 - Angiographies
 - Arthrography
 -
 - Oral, rectal, intravenous.....

Conestat alfa and acute kidney injury
Physiology / Pathophysiology

Iodinated CM

- Majority water soluble, >90% renal elimination
- Does not enter the cells

Adverse events

- «Allergic» reaction
- Contrast-associated acute kidney injury
- Exacerbation of pre-existing hyperthyroidism
Contrast-associated acute kidney injury (CI-AKI)

- Third leading cause of acute kidney failure (ARF) in the hospital.¹

Definition:
- Exposure to iodinated CM
- Alternative major injuries are ruled out

Consequences:
- Prolonged hospitalization, significant morbidity and mortality and increased health care costs

¹ Tublin ME et al., AJR 1998
Conestat alfa and acute kidney injury

Rudnick M et al., Clin J Am Soc Nephrol 2008;
Levy EM et al., JAMA 1996;
Giacoppo D, Circ Cardiovasc Interv 2015
McCullough PA, Am J Cardiolog 2006
CI-AKI – risk factors

<table>
<thead>
<tr>
<th>Non-modifiable</th>
<th>Modifiable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renal disease</td>
<td>Anemia</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>Shock/Sepsis</td>
</tr>
<tr>
<td>Heart failure</td>
<td>Hypotension</td>
</tr>
<tr>
<td>Hypercholesterolemia</td>
<td>CM > 100ml</td>
</tr>
<tr>
<td>Age > 75 years</td>
<td>Nephrotoxic drugs</td>
</tr>
<tr>
<td></td>
<td>Dehydration</td>
</tr>
<tr>
<td></td>
<td>Repeat administration of CM</td>
</tr>
</tbody>
</table>
CI-AKI – risk score

Risk of contrast media associated kidney injury

Multivariate Predictors

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypotension</td>
<td>5</td>
</tr>
<tr>
<td>IABP use</td>
<td>5</td>
</tr>
<tr>
<td>CHF</td>
<td>5</td>
</tr>
<tr>
<td>SCr >1.5 mg/dL</td>
<td>4</td>
</tr>
<tr>
<td>(SCr >132 μmol/L)</td>
<td></td>
</tr>
<tr>
<td>Age >75 y</td>
<td>4</td>
</tr>
<tr>
<td>Anemia</td>
<td>3</td>
</tr>
<tr>
<td>DM</td>
<td>3</td>
</tr>
<tr>
<td>Contrast volume</td>
<td>1 point/100 mL</td>
</tr>
</tbody>
</table>

Risk group: Low ≤5, Moderate 6 to 10, High 11 to 15, Very High ≥16

CIN, contrast-induced nephropathy; DM, diabetes mellitus; IABP, Intra-aortic balloon pump

Mehran R, J Am Coll Cardiol 2004
CI-AKI – Prevention

- Hydration with 0.9% sodium chloride
- Low-osmolar/iso-osmolar CM
- Lowest amount of CM possible
- Stop of nephrotoxic drugs (e.g. certain pain killer and antibiotics)

??

N-acetylcysteine RenalGuard Therapy®

Sodium bicarbonate Mannitol

Statins Forced diuresis
CI-AKI - Pathophysiology

Predisposing factors
- Renal disease
- Diabetes
- Age >75
- Sepsis
- Shock
- CM > 100ml
- Hypotension
- Nephrotoxic drugs
- Anemia
- EF <40%

Direct kidney injury

Medullary ischemia

Oxidative stress

Reperfusion injury

CI-AKI

Inflammation

Complement system

C1 esterase inhibitor

Other factors
- Nephrotoxic drugs
- Bleeding/hypotension
- Cholesterol embolism
- ...

Osthoff M et al., Biomed Res Int 2013
www.msdmanuals.com

Conestat alfa and acute kidney injury
C1 esterase inhibitor (C1INH)

- Human plasma protein – multiple-action-multiple-target inhibitor (complement, coagulation and contact (kinin) system, fibrinolysis)

Panagiotou A, Frontiers Immunol 2018

Conestat alfa and acute kidney injury

26.10.2019
C1 esterase inhibitor (C1INH)

- Human plasma protein – *multiple-action-multiple-target inhibitor* (complement, coagulation and contact (kinin) system, fibrinolysis)
- Approved for hereditary angioedema
- Plasma-derived or recombinant version *(rhC1INH/conestat alfa)*

- Ameliorates experimental renal ischemia/reperfusion injury

Huang H, Scientific Reports 2018

Conestat alfa and acute kidney injury
C1 esterase inhibitor (C1INH)

- Human plasma protein – *multiple-action-multiple-target inhibitor* (complement, coagulation and contact (kinin) system, fibrinolysis)
- Approved for hereditary angioedema
- Plasma-derived or recombinant version *(rhC1INH/conestat alfa)*

- Ameliorates experimental renal ischemia/reperfusion injury

Complement deposition in the kidneys
Serum creatinine increase

Van der Pol et al., Am J Transplant 2012; Danobeitia JS et al., PLOS one 2017

Conestat alfa and acute kidney injury
Study rationale

- Ischemia/reperfusion injury contributes to CI-AKI
- rhC1INH reduces experimental renal ischemia/reperfusion injury

Is prophylactic rhC1INH treatment associated with a reduced risk of CI-AKI in high-risk patients?
Study design – PROTECT study
Recombinant Human C1 Esterase Inhibitor in the Prevention of Contrast-induced Nephropathy in High-risk Subjects

<table>
<thead>
<tr>
<th>Study type</th>
<th>Randomized, double-blind, placebo-controlled, exploratory (phase 2) study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study population</td>
<td>Individuals with chronic kidney disease scheduled for elective coronary angiography (+/- angioplasty)</td>
</tr>
</tbody>
</table>

Pilot study
- small study often done to assist the preparation of a larger, more comprehensive study
- to demonstrate feasibility of key components
- to estimate key parameters for a larger trial
- to identify a target population for a larger trial

«Some signal» of efficacy
- «Good results»: to demonstrate
- No safety concern

Conestat alfa and acute kidney injury
Study design – elective coronary angiography

Chest pain (worsening)
Progressive shortness of breath
Positive cardiac stress test
Before major surgery

Conestat alfa and acute kidney injury
Study design – elective coronary angiography

- 30 - 90 minutes
- 50 - 400 ml contrast media
- Usually safe, most common side effect: bleeding

Conestat alfa and acute kidney injury
Study design

<table>
<thead>
<tr>
<th>Study type</th>
<th>Randomized, double-blind, placebo-controlled, exploratory (phase 2) study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study population</td>
<td>Individuals with chronic kidney disease scheduled for elective coronary angiography (+/- angioplasty)</td>
</tr>
<tr>
<td>Inclusion criteria</td>
<td>≥18a, eGFR ≤ 50ml/min/1.73m² plus ≥ 1 of the following: Age ≥ 75y, congestive heart failure NYHA III/IV, diabetes mellitus, anemia (hematocrit ≤ 39% for men and ≤ 36% for women), history of pulmonary edema</td>
</tr>
</tbody>
</table>

Multivariate Predictors
- Hypotension
- IABP use
- CHF
- SCr > 1.5 mg/dL
- (>132 μmol/L)
- Age > 75 y
- Anemia
- DM
- Contrast volume 1 point/100 mL

Risk group:
- Low ≤ 5
- Moderate 6 to 10
- High 11 to 15
- Very High ≥ 16

Development dataset N=5571
Prediction dataset N=2786
Study design

<table>
<thead>
<tr>
<th>Study type</th>
<th>Randomized, double-blind, placebo-controlled, exploratory (phase 2) study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study population</td>
<td>Individuals with chronic kidney disease scheduled for elective coronary angiography (+/- angioplasty)</td>
</tr>
<tr>
<td>Inclusion criteria</td>
<td>≥18a, eGFR ≤ 50ml/min/1.73m² plus ≥ 1 of the following: Age ≥ 75y, congestive heart failure NYHA III/IV, diabetes mellitus, anemia (hematocrit ≤ 39% for men and ≤ 36% for women), history of pulmonary edema</td>
</tr>
<tr>
<td>Exclusion criteria</td>
<td>Allergy to rabbits, recent (≤ 2wk) pulmonary edema or myocardial infarction, dialysis, multiple myeloma, recent (≤ 7d) exposure to contrast media, pregnancy/lactation, treatment with N-acetylcysteine or sodium bicarbonate</td>
</tr>
</tbody>
</table>
Biomarker of acute kidney injury

Malyszko J, Scientific Reports 2015; Briguori C, J Biomedicine Biotechnology 2014
Fähling M, Nature Rev Nephrology 2017
Intervention

- Screening
- Informed consent
- Randomization
- Baseline samples
- Hydration

Blood/urine sampling
- Discharge

Outpatient visit
- Blood/urine sampling

Telephone interview

Group 1: rhC1INH
- <84kg: 50 U/kg
- >84kg: 4200 U

Group 2: placebo
- Sodium chloride

Blood/urine sampling
Trial profile and baseline characteristics

1566 patients screened (01/2017-5/2018)

1486 not randomised
Protocol exclusion criteria
1360 eGFR>=50ml/min
25 acute heart failure
7 STEMI/NSTEMI
39 contrast media exposure
13 dialysis
12 no additional risk factor
2 other
Other reasons
29 patient not willing
2 other

80 randomized

40 assigned placebo
1 angiography not performed
39 included in mITT
1 protocol violation
38 included in PP

40 assigned rhC1INH
2 angiography not performed
38 included in mITT
2 protocol violation
36 included in PP

Abbreviation: rhC1INH, recombinant human C1 inhibitor; eGFR, estimated glomerular filtration rate; mITT = modified intention-to-treat analysis (participants who have received at least one dose of study medication and have undergone the planned elective angiography); PP = per protocol analysis (two doses of study medication)
Baseline characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Placebo N=39</th>
<th>rhC1INH N=38</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female, n (%)</td>
<td>11 (28.2)</td>
<td>12 (31.6)</td>
<td>0.8</td>
</tr>
<tr>
<td>Age in years, mean (SD)</td>
<td>77.7 (9.4)</td>
<td>76.2 (7.0)</td>
<td>0.4</td>
</tr>
<tr>
<td>Dyslipidemia</td>
<td>23 (59.0)</td>
<td>25 (65.8)</td>
<td>0.5</td>
</tr>
<tr>
<td>Diabetes mellitus, n (%)</td>
<td>14 (35.9)</td>
<td>18 (47.4)</td>
<td>0.3</td>
</tr>
<tr>
<td>Heart failure, n (%)</td>
<td>21 (53.8)</td>
<td>16 (42.1)</td>
<td>0.3</td>
</tr>
<tr>
<td>Coronary artery disease, n (%)</td>
<td>20 (51.3)</td>
<td>24 (63.2)</td>
<td>0.3</td>
</tr>
<tr>
<td>Previous MI, n (%)</td>
<td>12 (30.8)</td>
<td>13 (34.2)</td>
<td>0.8</td>
</tr>
<tr>
<td>ACE-I or ATII-RA, n (%)</td>
<td>29 (74.4)</td>
<td>33 (86.8)</td>
<td>0.2</td>
</tr>
<tr>
<td>Loop diuretic, n (%)</td>
<td>19 (48.7)</td>
<td>16 (42.1)</td>
<td>0.6</td>
</tr>
<tr>
<td>Metformin, n (%)</td>
<td>8 (20.5)</td>
<td>8 (21.1)</td>
<td>1</td>
</tr>
<tr>
<td>Aspirin, n (%)</td>
<td>21 (53.8)</td>
<td>24 (63.2)</td>
<td>0.5</td>
</tr>
<tr>
<td>Statin, n (%)</td>
<td>21 (53.8)</td>
<td>29 (76.3)</td>
<td>0.06</td>
</tr>
<tr>
<td>Betablocker, n (%)</td>
<td>20 (51.3)</td>
<td>28 (73.7)</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Abbreviation: RAAS, renin-angiotension-aldosterone system; CAD, coronary artery disease; MI, myocardial infarction;
Intervention characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Placebo N=39</th>
<th>rhC1INH N=38</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creatinine (µmol/l)</td>
<td>128 (52)</td>
<td>133 (36)</td>
<td>0.9</td>
</tr>
<tr>
<td>eGFR (ml/min/1.73m²)</td>
<td>41 (15)</td>
<td>44 (10)</td>
<td>0.8</td>
</tr>
<tr>
<td>Urinary NGAL (ng/ml)</td>
<td>17.7 (39.9)</td>
<td>21.1 (46.8)</td>
<td>0.6</td>
</tr>
<tr>
<td>Cystatin C (mg/l)</td>
<td>1.58 (0.4)</td>
<td>1.55 (0.5)</td>
<td>0.8</td>
</tr>
<tr>
<td>Reason for angiography</td>
<td></td>
<td></td>
<td>0.7</td>
</tr>
<tr>
<td>Angina</td>
<td>13 (33.3)</td>
<td>17 (44.7)</td>
<td></td>
</tr>
<tr>
<td>Before surgery or TAVR</td>
<td>8 (20.5)</td>
<td>9 (23.7)</td>
<td></td>
</tr>
<tr>
<td>Positive stress test</td>
<td>9 (23.1)</td>
<td>7 (18.4)</td>
<td></td>
</tr>
<tr>
<td>Coronary artery stenosis</td>
<td>4 (10.3)</td>
<td>4 (10.5)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>5 (12.8)</td>
<td>1 (2.6)</td>
<td></td>
</tr>
<tr>
<td>Contrast media (ml)</td>
<td>112 (94)</td>
<td>110 (83)</td>
<td>0.5</td>
</tr>
<tr>
<td>PCI</td>
<td>15 (38.5)</td>
<td>15 (39.5)</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Abbreviations; eGFR, estimated glomerular filtration rate (calculated with the Chronic Kidney Disease Epidemiology Collaboration equation (CKD-Epi)); PCI, percutaneous coronary intervention; TAVR, transcatheter aortic valve replacement
Change in C1INH concentration

- Placebo
- rhC1INH

% change of C1INH levels

<table>
<thead>
<tr>
<th>Time</th>
<th>Placebo</th>
<th>rhC1INH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>after 1st dose</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>after 2nd dose</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

p < 0.0001
Results – peak urinary NGAL increase within 48 h

<table>
<thead>
<tr>
<th>Median (IQR)</th>
<th>Placebo</th>
<th>rhC1INH</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entire population</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absolute (ng/ml)</td>
<td>22.5 (80.3)</td>
<td>4.7 (51.4)</td>
<td>0.038</td>
</tr>
<tr>
<td>Relative (%)</td>
<td>121 (277)</td>
<td>29 (152)</td>
<td>0.052</td>
</tr>
<tr>
<td>Percutaneous coronary intervention (PCI)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absolute (ng/ml)</td>
<td>26.2 (117.8)</td>
<td>1.8 (15.2)</td>
<td>0.039</td>
</tr>
<tr>
<td>Relative (%)</td>
<td>205 (385)</td>
<td>11 (79)</td>
<td>0.002</td>
</tr>
</tbody>
</table>

Relative peak increase (%)
Results – course of urinary NGAL

Absolute concentration (ng/ml, medians)

Relative concentration (%, medians)

Conestat alfa and acute kidney injury
Results – secondary endpoints / safety

Secondary endpoint

<table>
<thead>
<tr>
<th>Secondary endpoint</th>
<th>Placebo</th>
<th>rhC1INH</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cystatin C increase > 10% within 24h</td>
<td>13 (33.3)</td>
<td>6 (15.8)</td>
<td>0.045</td>
</tr>
<tr>
<td>Acute kidney injury<sup>1</sup></td>
<td>7 (17.9)</td>
<td>6 (15.8)</td>
<td>0.7</td>
</tr>
<tr>
<td>Troponin T peak increase within 24h (ng/l)</td>
<td>8 (33.0)</td>
<td>10.5 (56.0)</td>
<td>0.13</td>
</tr>
</tbody>
</table>

¹ increase in serum creatinine of ≥26 µmol/l or ≥50% within 48h

Safety (within 3 months)

<table>
<thead>
<tr>
<th>Safety (within 3 months)</th>
<th>Placebo</th>
<th>rhC1INH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composite cardiovascular/renal outcome<sup>1</sup>, n (%)</td>
<td>3 (8)</td>
<td>3 (8)</td>
</tr>
<tr>
<td>Any adverse event, n (%)</td>
<td>16 (41)</td>
<td>14 (37)</td>
</tr>
<tr>
<td>Any possible drug-related adverse event, n (%)</td>
<td>2 (5)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Serious adverse event, n (%)</td>
<td>8 (21)</td>
<td>8 (21)</td>
</tr>
<tr>
<td>Death, n (%)</td>
<td>3 (8)</td>
<td>0</td>
</tr>
</tbody>
</table>

¹ death, unstable angina/acute coronary syndrome, hospitalization for heart or renal failure or hemodialysis
Conclusion

1st human trial of rhC1INH in ischemia/reperfusion injury setting

Administration of rhC1INH before and 4 hours after coronary angiography
 • was associated with less renal injury (as reflected by urinary NGAL and cystatin C)
 • in particular in patients undergoing more invasive procedures

The safety profile was favorable in a patient population with multiple comorbidities and polypharmacy

Future studies are warranted to investigate the nephroprotection by rhC1INH in more detail
To be continued....
Myocardial infarction and kidney injury
Acknowledgements

Cardiology
Raban Jeger
Christoph Kaiser
Gregor Fahrni

Medical Immunology Laboratory
Ingmar Heijnen

Internal Medicine
Tobias Breidthard
Stephan Moser
Anneza Panagiotou
Marten Trendelenburg

Clinical Immunology Laboratory
Marten Trendelenburg
Denise Dubler

Department of Clinical Research
Anya Hammann
Michael Scharfe
Constantin Sluka

Luca Bellizzi
Gabriel Cozma
Anurag Relan
Thank you very much for your attention

Contact:
Michael Osthoff, MD
University Hospital Basel
Division of Internal Medicine
Petersgraben 4, 4031 Basel, Switzerland
Email: michael.osthoff@usb.ch