

Recombinant human C1 esterase inhibitor (Conestat alfa) in the prevention of contrast-induced nephropathy in high-risk subjects (PROTECT): a randomized, placebocontrolled, double-blind single-center trial

Michael Osthoff, M.D.

Division of Internal Medicine, Department of Infectious Diseases, Department of Clinical Research and Biomedicine, University Hospital Basel, University Basel, Basel, Switzerland

Disclosures

- Research grants: Pharming Biotechnologies B.V., Fondation Machaon,
 University Basel
- Travel grants: MSD, Gilead, Pfizer, Pharming Biotechnologies B.V.
- Lecture fee: MSD, Mundipharma
- Consultation fee: Pharming Biotechnologies B.V.

Radiographic contrast media (CM)

- Essential tool in modern radiology and medicine
 - Diagnostic

Therapeutic

Radiographic contrast media (CM)

CM makes fluid visible by increasing absorbance (>10% compared to blood)

010

History

1910: Barium sulphate for gastroinestinal contrast study

■ **1920's:** sodium iodide used to treat syphilis. Was found to be radio opaque on x-rays

- lodinated CM most commonly used today for
 - ✓ CT scans
 - ✓ Angiographies
 - ✓ Arthrography
 - **√**.....
 - ✓ Oral, rectal, intravenous....

Physiology / Pathophysiology

lodinated CM

- Majority water soluble, >90% renal eliminiation
- Does not enter the cells

Adverse events

- «Allergic» reaction
- Contrast-associated acute kidney injury
- Excerbation of pre-existing hyperthyroidism

Contrast-associated acute kidney injury (CI-AKI)

- Third leading cause of acute kidney failure (ARF) in the hospital.¹
- Definition:
 - Exposure to iodinated CM
 - Alternative major injuries are ruled out
- Consequences:
 - Prolonged hospitalization, significant morbidity and mortality and increased health care costs

CI-AKI – risk factors

Non-modifiable	Modifiable
Renal disease	Anemia
Diabetes mellitus	Shock/Sepsis
Heart failure	Hypotension
Hypercholesterolemia	CM > 100ml
Age > 75 years	Nephrotoxic drugs
	Dehydration
	Repeat administration of CM

CI-AKI – risk score

CIN, contrast-induced nephropathy; DM, diabetes mellitus; IABP, Intra-aortic balloon pump

Risk score:

Mehran R, J Am Coll Cardiol 2004

≥16

11 to 15

6 to 10

≤5

CI-AKI – Prevention

- Hydration with 0.9% sodium chloride
- Low-osmolar/iso-osmolar CM
- Lowest amount of CM possible
- Stop of nephrotoxic drugs (e.g. certain pain killer and antibiotics)

RenalGuard Therapy®

Sodium bicarbonate

Mannitol

Statins

Forced diuresis

CI-AKI - Pathophysiology

Osthoff M et al., Biomed Res Int 2013 www.msdmanuals.com

Renal disease Diabetes Age >75 Sepsis Shock CM > 100ml

Hypotension

Anemia EF < 40% Calvces

Renal capsule

Cortex

Medulla

Renal pelvis Ureter

Renal artery

Inflammation Complement system

Cholesterol embolism

CI-AK

C1 esterase inhibitor (C1INH)

 Human plasma protein – multiple-action-multiple-target inhibitor (complement, coagulation and contact (kinin) system, fibrinolysis)

C1 esterase inhibitor (C1INH)

- Human plasma protein multiple-action-multiple-target inhibitor (complement, coagulation and contact (kinin) system, fibrinolysis)
- Approved for hereditary angioedema
- Plasma-derived or recombinant version (rhC1INH/conestat alfa)
- Ameliorates experimental renal ischemia/reperfusion injury

C1 esterase inhibitor (C1INH)

- Human plasma protein multiple-action-multiple-target inhibitor (complement, coagulation and contact (kinin) system, fibrinolysis)
- Approved for hereditary angioedema
- Plasma-derived or recombinant version (rhC1INH/conestat alfa)
- Ameliorates experimental renal ischemia/reperfusion injury

Complement deposition in the kidneys

C'S

Placebo rhC1INH

Van der Pol et al., Am J Transplant 2012; Danobeitia JS et al., PLOS one 2017

Serum creatinine increase

Study rationale

- Ischemia/reperfusion injury contributes to CI-AKI
- rhC1INH reduces experimental renal ischemia/reperfusion injury

Is prophylactic rhC1INH treatment associated with a reduced risk of CI-AKI in high-risk patients?

6.10.2019

Study design – PROTECT study

Recombinant Human C1 Esterase Inhibitor in the Prevention of Contrast-induced Nephropathy in High-risk Subjects

Study type	Randomized, double-blind, placebo-controlled, exploratory (phase 2) study
Study	Individuals with chronic kidney disease scheduled for elective coronary
population	angiography (+/- angioplasty)

Pilot study

- small study often done to assist the preparation of a larger, more comprehensive study
- to demonstrate feasibility of key components
- to estimate key parameters for a larger trial
- to identify a target population for a larger trial

Study design – elective coronary angiography

Chest pain (worsening)
Progressive shortness of breath
Positive cardiac stress test
Before major surgery

Study design – elective coronary angiography

- 30 90 minutes
- 50 400 ml contrast media
- Usually safe, most common side effect: bleeding

Study design

Study type	Randomized, double-blind, placebo-controlled, exploratory (phase 2) study
Study population	Individuals with chronic kidney disease scheduled for elective coronary angiography (+/- angioplasty)
Inclusion criteria	\geq 18a, eGFR ≤ 50ml/min/1.73m² plus \geq 1 of the following: Age \geq 75y, congestive heart failure NYHA III/IV, diabetes mellitus, anemia (hematocrit ≤ 39% for men and ≤ 36% for women), history of pulmonary edema

Study design

Study type	Randomized, double-blind, placebo-controlled, exploratory (phase 2) study
Study population	Individuals with chronic kidney disease scheduled for elective coronary angiography (+/- angioplasty)
Inclusion criteria	\geq 18a, eGFR \leq 50ml/min/1.73m ² plus \geq 1 of the following: Age \geq 75y, congestive heart failure NYHA III/IV, diabetes mellitus, anemia (hematocrit \leq 39% for men and \leq 36% for women), history of pulmonary edema
Exclusion criteria	Allergy to rabbits, recent (< 2wk) pulmonary edema or myocardial infarction, dialysis, multiple myeloma, recent (< 7d) exposure to contrast media, pregnancy/lactation, treatment with N-acetylcystein or sodium bicarbonate

Biomarker of acute kidney injury

Malyszko J, Scientific Reports 2015; Briguori C, J Biomedicine Biotechnology 2014 Fähling M, Nature Rev Nephrology 2017

Intervention

22

Trial profile and baseline characteristics

Abbreviation: rhC1INH, recombinant human C1 inhibitor; eGFR, estimated glomerular filtration rate; mITT = modified intention-to-treat analysis (participants who have received at least one dose of study medication and have undergone the planned elective angiography); PP = per protocol analysis (two doses of study medication)

The PROTECT study 15.06.2019

Baseline characteristics

Parameter	Placebo N=39	rhC1INH N=38	P value
Female, n (%)	11 (28.2)	12 (31.6)	0.8
Age in years, mean (SD)	77.7 (9.4)	76.2 (7.0)	0.4
Dyslipidemia	23 (59.0)	25 (65.8)	0.5
Diabetes mellitus, n (%)	14 (35.9)	18 (47.4)	0.3
Heart failure, n (%)	21 (53.8)	16 (42.1)	0.3
Coronary artery disease, n (%)	20 (51.3)	24 (63.2)	0.3
Previous MI, n (%)	12 (30.8)	13 (34.2)	0.8
ACE-I or ATII-RA, n (%)	29 (74.4)	33 (86.8)	0.2
Loop diuretic, n (%)	19 (48.7)	16 (42.1)	0.6
Metformin, n (%)	8 (20.5)	8 (21.1)	1
Aspirin, n (%)	21 (53.8)	24 (63.2)	0.5
Statin, n (%)	21 (53.8)	29 (76.3)	0.06
Betablocker, n (%)	20 (51.3)	28 (73.7)	0.06

Abbreviation: RAAS, renin-angiotension-aldosterone system; CAD, coronary artery disease; MI, myocardial infarction;

Intervention characteristics

Parameter median (IQR) or n (%)	Placebo N=39	rhC1INH N=38	P value
Creatinine (µmol/l)	128 (52)	133 (36)	0.9
eGFR (ml/min/1.73m²)	41 (15)	44 (10)	0.8
Urinary NGAL (ng/ml)	17.7 (39.9)	21.1 (46.8)	0.6
Cystatin C (mg/l)	1.58 (0.4)	1.55 (0.5)	0.8
Reason for angiography			0.7
Angina	13 (33.3)	17 (44.7)	
Before surgery or TAVR	8 (20.5)	9 (23.7)	
Positive stress test	9 (23.1)	7 (18.4)	
Coronary artery stenosis	4 (10.3)	4 (10.5)	
Other	5 (12.8)	1 (2.6)	
Contrast media (ml)	112 (94)	110 (83)	0.5
PCI	15 (38.5)	15 (39.5)	0.7

Abbreviations; eGFR, estimated glomerular filtration rate (calculated with the Chronic Kidney Disease Epidemiology Collaboration equation (CKD-Epi)), PCI, percutaneous coronary intervention; TAVR, transcatheter aortic valve replacement

Change in C1INH concentration

Results – peak urinary NGAL increase within 48 h

Median (IQR)	Placebo	rhC1INH	P value
Entire population			
Absolute (ng/ml)	22.5 (80.3)	4.7 (51.4)	0.038
Relative (%)	121 (277)	29 (152)	0.052
Percutaneous coronary intervention (PCI)			
Absolute (ng/ml)	26.2 (117.8)	1.8 (15.2)	0.039
Relative (%)	205 (385)	11 (79)	0.002

0.21

Relative peak increase (%)

Results – course of urinary NGAL

Absolute concentration (ng/ml, medians)

Relative concentration (%, medians)

Results – secondary endpoints / safety

Secondary endpoint Median (IQR) or n (%)	Placebo	rhC1INH	P value
Cystatin C increase ≥ 10% within 24h	13 (33.3)	6 (15.8)	0.045
Acute kidney injury ¹	7 (17.9)	6 (15.8)	0.7
Troponin T peak increase within 24h (ng/l)	8 (33.0)	10.5 (56.0)	0.13

¹ increase in serum creatinine of ≥26 µmol/l or ≥50% within 48h

Safety (within 3 months)	Placebo	rhC1INH
Composite cardiovascular/renal outcome ¹ , n (%)	3 (8)	3 (8)
Any adverse event, n (%)	16 (41)	14 (37)
Any possible drug-related adverse event, n (%)	2 (5)	0 (0)
Serious adverse event, n (%)	8 (21)	8 (21)
Death, n (%)	3 (8)	0

¹ death, unstable angina/acute coronary snydrome, hospitalization for heart or renal failure or hemodialysis

Conclusion

1st human trial of rhC1INH in ischemia/reperfusion injury setting

Administration of rhC1INH before and 4 hours after coronary angiography

- was associated with less renal injury (as reflected by urinary NGAL and cystatin C)
- in particular in patients undergoing more invasive procedures

The safety profile was favorable in a patient population with multiple comorbidities and polypharmacy

Future studies are warranted to investigate the nephroprotection by rhC1INH in more detail

To be continued....

Myocardial infarction and kidney injury

Acknowledgements

Cardiology

Raban Jeger Christoph Kaiser Gregor Fahrni **Internal Medicine**

Tobias Breidthard Stephan Moser Anneza Panagiotou

Marten Trendelenburg

Medical Immunology Laboratory

Ingmar Heijnen

Clinical Immunology Laboratory

Marten Trendelenburg Denise Dubler

Department of Clinical Research

Anya Hammann Michael Scharfe Constantin Sluka

PHARMING

Luca Bellizzi Gabriel Cozma Anurag Relan

Thank you very much for your attention

Contact:

Michael Osthoff, MD

University Hospital Basel

Division of Internal Medicine

Petersgraben 4, 4031 Basel, Switzerland

Email: michael.osthoff@usb.ch

